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Abstract. A new numerical scheme for computing balancing coordinate transformations for signa-
ture symmetric realizations in linear systems theory is presented. The method is closely related to
the Jacobi method for diagonalizing symmetric matrices. Here the minimization of the sum of traces
of the Gramians by orthogonal and hyperbolic Jacobi-type rotations is considered. Local quadratic
convergence of the algorithm is shown.
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1. Introduction

Since the important work by Glover (1984) [7] and Ober (1987) [13], and despite a
growing literature on balanced realizations and model reduction there are only few
papers dealing with numerical aspects.

The first such numerical algorithms for balancing have been proposed by Laub
et al. (1987) [11] and Safonov and Chiang (1989) [14]. There exists an amount
of literature on balancing, model reduction techniques, and related algorithms in
the area of flexible structures. We mention the monograph by Gawronski (1996)
[6]. There is also the monograph by Fortuna et al. (1992) on model reduction
techniques and algorithms with applications in electrical engineering [5]. For ap-
plications of balancing algorithms in circuit synthesis see De Abreu-García et al.
(1987) [1]. Meanwhile, there are also efforts to parallelize known algorithms for
balancing, see the recent work by Benner et al. (1999) [3]. All the above mentioned
work on algorithms have in common that a full convergence theory is not available.

Numerical gradient flow algorithms for balancing, as presented by Moore and
Helmke (1994) [9] and Yan et al. (1994) [15] offer an alternative approach with
a better convergence theory, but these algorithms are only linearly convergent. In
[8] a Jacobi-type algorithm for computing balanced realizations is presented with
local quadratic convergence rate. Here we extend the analysis of [8] to balancing of
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signature symmetric realizations. For existence and uniqueness results on signature
symmetric realizations see Youla and Tissi (1966) [16], Anderson and Bitmead
(1977) [2], and Byrnes and Duncan (1982) [4]. For recent work on model reduction
for state-space symmetric systems see e.g. Liu et al. (1998) [12].

It is well konwn that balanced realizations of symmetric transfer functions are
signature symmetric. The above mentioned algorithms [11] and [14], however,
do not preserve the signature symmetry and they may be sensible to numerical
perturbations from the signature symmetric class.

In recent years there is a tremendous interest in structure preserving (matrix)
algorithms. The main motivation for this is twofold. If such a method can be con-
structed it usually (i) leads to reduction in complexity and (ii) often coincidently
avoids that in finite arithmetic physically meaningless results are obtained. Trans-
lated to our case that means that (i) as the appropriate state space transformation
group the Lie group O+

pq(R) of special pseudo-orthogonal transformations is used
instead of GLn(R). Furthermore, (ii) at any stage of our algorithm the computed
transformation corresponds to a signature symmetric realization if one would have
started with one.

2. Cost Function Approach to Balancing

In this section at first we briefly review notions and results on balancing and
signature symmetric realizations. Given any asymptotically stable linear system
(A,B,C), the continuous-time controllability Gramian Wc and the observability
Gramian Wo are defined, respectively, by

Wc =
∞∫

0

etABB ′etA′
d t,

Wo =
∞∫

0

etA′
C ′CetAd t.

(1)

Thus, assuming controllability and observability, the Gramians Wc,Wo are sym-
metric positive definite matrices. Moreover, a linear change of variables in the state
space by an invertible state space coordinate transformation T leads to the co- and
contravariant transformation law of Gramians as

(Wc,Wo) �→ (
T WcT

′, (T ′)−1WoT
−1

)
. (2)

Let p, q ∈ N0 be integers with p + q = n, Ipq := diag (Ip,−Iq). A realization
(A,B,C) ∈ R

n×n × R
n×m × R

m×n is called signature symmetric if

(AIpq)
′ = AIpq,

(CIpq)
′ = B

(3)
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holds. Note that every strictly proper symmetric rational (m×m)-transfer function
G(s) = G(s)′ of McMillan degree n has a minimal signature symmetric realization
and any two such minimal signature symmetric realizations are similar by a unique
state space similarity transformation T ∈ Opq(R). The set

Opq(R) := {T ∈ R
n×n|T IpqT

′ = Ipq}
is the real Lie group of pseudo-orthogonal (n × n)-matrices stabilizing Ipq by
congruence. The set O+

pq(R) denotes the identity component of Opq(R). Here p−q

is the Cauchy-Maslov index of G(s), see [2] and [4]. For any stable signature
symmetric realization the controllability and observability Gramians satisfy

Wo = IpqWcIpq. (4)

As usual, a realization (A,B,C) is called balanced if

Wc = Wo = � = diag (σ1, . . . , σn) (5)

where the σ1, . . . , σn are the Hankel singular values. For simplicity in the sequel
we assume that they are pairwise distinct.

LEMMA 2.1. Let

M(�) := {T �T ′ | T ∈ O+
pq(R)}, (6)

with � as in (5) assuming pairwise distinct Hankel singular values. Then
(1) M(�) is a smooth and connected manifold of dimension

dim M(�) = n(n − 1)/2. (7)

(2) The tangent space of M(�) at X ∈ M(�) is

TXM(�) =
{
�X + X� ′

∣∣∣ � ∈ opq(R)
}

. (8)

Proof. Consider the linear algebraic group action

α : O+
pq(R) × R

n×n → R
n×n,

α(T ,X) := T XT ′.
(9)

Thus M(�) is an orbit of the group action α under the connected Lie group O+
pq(R)

and therefore a smooth and connected manifold. Note that the stabilizer subgroup
of a point X ∈ M(�) is finite and therefore M(�) is diffeomorphic to O+

pq(R)

which as a pseudo-orthogonal group of order n = p+q has dimension n(n−1)/2.
Consider the smooth map

σ : O+
pq(R) → M(�),

σ (T ) := T XT ′.
(10)
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The tangent space of O+
pq(R) at the identity In is TIn

O+
pq(R) = opq(R). The

derivative of σ at In is the surjective linear map

Dσ |In
: opq(R) → TXM(�),

� �→ �X + X� ′.
(11)

The result follows. �
Let N := diag (µ1, . . . , µp, ν1, . . . , νq) with 0 < µ1 < · · · < µp and 0 <

ν1 < · · · < νq . We then consider the smooth cost function

fN : M(�) → R,

fN(W) := tr (NW).
(12)

This choice is motivated by our previous work on balanced realizations [8], where
we studied the smooth function tr (N(Wc + Wo)) with diagonal positive definite N

having distinct eigenvalues. Now

tr (N(Wc + Wo)) = tr (N(Wc + IpqWcIpq))

= 2tr (NWc)

by the above choice of a diagonal N . The following result summarizes the basic
properties of the cost function fN .

THEOREM 2.1. Let N := diag (µ1, . . . , µp, ν1, . . . , νq) with 0 < µ1 < · · · <

µp and 0 < ν1 < · · · < νq . For the smooth cost function fN : M(�) → R,
defined by fN(W) := tr (NW), the following holds true.
(1) fN : M(�) → R has compact sublevel sets and a minimum of fN exists.
(2) X ∈ M(�) is a critical point for fN : M(�) → R if and only if X is diagonal.
(3) The global minimum is unique and it is characterized by X = diag (σ1, . . . ,

σn), where σ1 > · · · > σp and σp+1 > · · · > σn holds.
(4) The Hessian of the function fN at a critical point is nondegenerate.

Proof. (1) follows from Theorem 6.3.5 and Lemma 6.4.1 in [9] if one restricts
the GLn(R) action in [9] to the above O+

pq(R)-action. The derivative of fN at X is
the linear function assigning to �X +X� ′ the value 2tr(N�X). Now we partition
the matrices

� =
[

�11 �12

�21 �22

]
(13)

and

X =
[

X11 X12

X′
12 X22

]
(14)

into sub matrices according to

N = diag (Nµ,Nν)



COMPUTATION OF SIGNATURE SYMMETRIC BALANCED REALIZATIONS 139

with

Nµ := diag (µ1, . . . , µp) and Nν := diag (ν1, . . . , νq).

Note that for � ∈ opq(R) holds �11 = −� ′
11, �22 = −� ′

22, �12 = � ′
21. Thus the

derivative is zero if and only if
(i) [X11, Nµ] = 0

(ii) [X22, Nν ] = 0,
(iii) X′

12Nµ + NνX
′
12 = 0.

By assumption on the matrix N conditions (i) and (ii) force X11 and X22 to be
diagonal, respectively, whereas (iii) demands X12 = 0. This proves (2).

Next we compute the Hessian of fN at a critical point

X = diag (y1, . . . , yp, z1, . . . , zq).

After cumbersome block matrix computations one arrives at

d2

dt2
fN

(
et�Xet�′)∣∣∣∣

t=0

= 2tr (�2XN + �X� ′N)

=
∑

1�i<j�p

(
ψ

(11)
ij

)2
(yj − yi)(µi − µj ) (15)

+
∑

1�i<j�q

(
ψ

(22)
ij

)2
(zj − zi)(νi − νj )

+
∑

1�i�p
1�j�q

(
ψ

(12)
ij

)2
(yi + zj )(µi + νj ).

Here ψ
(rs)
kl denotes the kl-entry of the rs-sub matrix �rs of �, see (13). Therefore

by assumption on the entries of the matrix N the Hessian is positive definite if
and only if the two subsets {y1, . . . , yp} and {z1, . . . , zq} of the Hankel singular
values are ordered on the diagonal of the critical point X as required. Moreover,
because the Hankel singular values are pairwise distinct the quadratic form (15) is
nondegenerate at a critical point.

It remains to show that the global minimum is unique. Let V,W ∈ M(�) be
two different critical points. As a consequence of Theorem 6.3.5 in [9] they differ
in how the Hankel singular values are ordered on the diagonal, i.e., there exists an
orthogonal permutation matrix P such that W = PV P ′ holds. Now

O+
pq(R) ∩ SOn(R) = SOp(R) × SOq(R)

with SOr (R) := {T ∈ R
r×r |T T ′ = Ir, det(T ) = 1}. Therefore the permutation

matrix has to be block diagonal,

P = diag (P1, P2)
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with permutation matrices P1 and P2 of order p, respectively q. It follows that the
global minimum X = diag (σ1, . . . , σn), with σ1 > · · · > σp and σp+1 > · · · >

σn is unique, moreover, there is no further local minimum, because for any other
critical point than X either the sum in the second row of (15) or the sum in the third
row of (15) has at least one positive summand, which means that the Hessian is no
longer positive definite but indefinite. This proves (3) and (4). �

3. Jacobi-type Algorithm for Balancing

The constraint set for our cost function fN : M(�) → R is the Lie group O+
p,q(R)

with Lie algebra opq(R). We choose a basis of opq(R) as

�ij := eje
′
i − eie

′
j (16)

where 1 � i < j � p or p + 1 � i < j � n holds and

�kl := ele
′
k + eke

′
l (17)

where 1 � k � p < l � n holds. These basis elements are defined via the
standard basis vectors e1, . . . , en of R

n. Thus exp(t�ij ) is an orthogonal rotation
with (i, j)−th sub matrix[

cos t − sin t

sin t cos t

]
(18)

and exp(t�kl) is a hyperbolic rotation with (k, l)−th sub matrix[
cosh t sinh t

sinh t cosh t

]
. (19)

Let N as in Theorem 2.1 above and let W be symmetric positive definite. Consider
the smooth function

φ : R → R,

φ(t) := tr
(
Net�Wet�′) (20)

where � denotes a fixed element of the above basis of opq(R). We have

LEMMA 3.1.
(1) For � = �kl = (�kl)

′ as in (17) the function φ : R → R defined by (20) is
proper and bounded from below.

(2) A minimum

t� := arg min
t∈R

φ(t) ∈ R (21)

exists for all � = �ij = −(�ij )
′ where 1 � i < j � p or p + 1 � i < j � n

holds, and exists as well for all � = �kl = (�kl)
′ where 1 � k � p < l � n

holds.
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Proof. See Lemma 3 in [8]. �
We now formulate a Jacobi-type algorithm to minimize fN : M(�) → R,

fN(W) = tr (NW). Using an arbitrary ordering of the above basis elements we
denote by et�1, . . . , et�n(n−1)/2 the n(n−1)/2 different basic transformations defined
by (16) and (17). The proposed algorithm for minimizing the smooth cost function
fN then consists of a recursive application of so-called sweep operations. Let for
1 � i � n(n − 1)/2

ri : M(�) × R → M(�),

ri(W, t) := et�iWet�′
i .

(22)

ALGORITHM 3.1. (Jacobi Sweep). Define

W
(0)
k := W

W
(1)
k := r1

(
W

(0)
k , t (1)

∗
)

W
(2)
k := r2

(
W

(1)
k , t (2)

∗
)

...

W
(n(n−1)/2)

k := rn(n−1)/2

(
W

(n(n−1)/2−1)

k , t (n(n−1)/2)
∗

)
where for i = 1, . . . , n(n − 1)/2

t (i)∗ := arg min
t∈R

tr
(
Net�iW

(i−1)
k et�′

i

)
if

tr
(
Net�iW

(i−1)
k et�′

i

)
�≡ tr

(
NW

(i−1)
k

)
,

and

t (i)∗ := 0

otherwise.

Thus W
(i)
k is recursively defined as a global minimum of the smooth function fN :

M(�) → R, when restricted to the i−th smooth curve

γi : R → M(�),

t �→ et�iW
(i−1)
k et�′

i

(23)

containing γi(0) = W
(i−1)
k . The algorithm then consists of the iteration of sweeps

as discribed in Algorithm 3.2.
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ALGORITHM 3.2. (Jacobi-type Algorithm).
(1) For k ∈ {0, 1, 2, 3, . . . } let W0, . . . ,Wk ∈ M(�) be given.
(2) Define the finite recursive sequence

W
(1)
k , . . . ,W

(n(n−1)/2)

k

as above (Jacobi Sweep).

(3) Set Wk+1 := W
(n(n−1)/2)

k . Proceed with the next sweep applied to Wk+1.

We continue to study the smoothness properties of a sweep, i.e., of one recursion
step. A sweep

s : M(�) → M(�) (24)

of the Jacobi algorithm consists of n(n − 1)/2 transformations

s(W) := (rn(n−1)/2 ◦ · · · ◦ r1)(W). (25)

By abuse of our former notation here

ri(W) := eti (W)�iWeti (W)�′
i (26)

and ti(W) denotes a global minimum of the function

t �→ ϕ(W, t) := tr
(
Net�iWet�′

i

)
with 1 � i � n(n − 1)/2. A simple calculation shows that ti (W) can be given
explicitly, see Equations (25) and (27) in [8] for details. We get

LEMMA 3.2. The map ri : M(�) → M(�), defined by (26) is smooth on an
open neighborhood of any critical point X of the function fN defined by (12). �

Proof. For skew-symmetric �ij = ej e
′
i − eie

′
j the result is a direct consequence

of Lemma 5.1.1 in [10]. For symmetric �kl = ele
′
k + eke

′
l note that there is an

explicit formula for the unique global minimizer, namely

tkl(W) = 1

2
tanh−1 2wkl

wkk + wll

which by the positive definiteness of W is even globally smooth, see [8] Lemma 5
for details. �

The convergence properties of the above algorithm are established by the fol-
lowing theorem which is the main result of this paper.

THEOREM 3.1. Let X0 := Wc = IpqWoIpq denote the controllability Gramian
of a stable signature symmetric minimal system (A,B,C). Let the matrix N as
in Theorem 2.1. Let (Wk), k = 0, 1, 2, . . . , denote the sequence of symmetric
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positive definite matrices generated by the Jacobi-type algorithm 3.2. Assume that
global convergence holds, i.e.,

lim
k→∞ Wk = diag (σ1, . . . , σn)

with σ1 > · · · > σp and σp+1 > · · · > σn.
Then convergence of the algorithm is locally quadratically fast.
Proof. Whereas pointwise convergence is strongly indicated by simulations, we

do not have a proof for that at present.
For local quadratic convergence the argument is as follows. By Lemma 3.2 the

map ri : M(�) → M(�), i.e. one partial iteration step, is smooth on an open
neighborhood U of the global minimum W∞. Consequently, a whole iteration step,
i.e. a sweep, s : M(�) → M(�), defined by (25), is smooth on U . The derivative
of a partial iteration step (26) acting on � ∈ TW∞M(�) is

Dri(W∞) · � = � + (�iW∞ + W∞�′
i ) · Dt (W∞) · �

= � + (�iW∞ + W∞�′
i )

−tr N(�i� + ��′
i)

2tr N(�2
i W∞ + �iW∞�′

i)
(27)

= � − ψi(�iW∞ + W∞�′
i)

where we have used the implicit function theorem to compute the derivative of t :
M(�) → R. Furthermore, we used for elements � of the tangent space TW∞M(�)

the representation � = �W∞ + W∞� ′ with � ∈ opq(R), and the expansion

� =
n(n−1)/2∑

i=1
ψi�i . Now by the chain rule the derivative of a whole iteration step s

vanishes at the global minimum W∞ identically

Ds(W∞) ≡ 0. (28)

Choose open, relatively compact neighborhoods U,V ⊂ M(�) of W∞ such that
s(U) ⊂ V and U,V are diffeomorphic to open subsets of R

n(n−1)/2. Without loss of
generality we may then assume that U,V are open, bounded subsets of R

n(n−1)/2.
Reformulating everything in local coordinates, from Taylor’s theorem, using (28),
we obtain

‖s(Wk) − W∞‖ � sup
W∈U

‖D2s(W)‖ · ‖Wk − W∞‖2. (29)

Thus the sequence (Wk) converges quadratically fast to W∞. �
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4. Computer Code

It is easy to present computer codes for the algorithms. The first one, Algorithm
4.1, defines a function that diagonalizes symmetric 2 × 2−matrices by orthogonal
transformations such that the eigenvalues appear in decreasing order. The second
function determines a hyperbolic congruence transformation that minimizes the
trace of a symmetric positive definite 2 × 2−matrix. Algorithm 4.3 presents a
complete Jacobi scheme for computing signature symmetric balanced realizations
with sorted Hankel singular values. In Algorithm 4.3 a sweep is built up by three
subsweeps. The first one operating on the first p rows and columns by orthogonal
transformations, followed by the second subsweep which operates by hyperbolic
transformations, and the last one operating on the last q rows and columns again
by orthogonal transformations. MATLAB-like algorithmic language and notation is
used. The matrices Tkl appearing below differ from the identity matrix only by the

(kl)−th submatrix
[

tkk tkl

tlk tll

]
with 1 � k, l � n. Accumulation of the congruence

transformations is possible, but is not explicitly formulated in the algorithms.

ALGORITHM 4.1. Given X = X′ ∈ R
n×n and k, l ∈ N with 1 � k < n and

k + 1 � l � n, a (cos, sin)−pair is computed such that if X̃ = TklXT ′
kl then

x̃kl = 0 and x̃kk � x̃ll .

function: (tkk, tkl, tlk, tll) = ortho (X, k, l)

if xkl �= 0
if xll �= xkk

τ = xll − xkk

2xkl

tan = sign (τ )

|τ | + √
1 + τ 2

cos = 1√
1 + tan2

sin = tan · cos

else

cos = 1

2

√
2

sin = −sign (xkl) · cos

end
else

cos = 1
sin = 0

end
if xkk � xll

tkk = cos

tkl = −sin

tlk = sin
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tll = cos

else
tkk = sin

tkl = cos

tlk = −cos

tll = sin

end
end ortho

ALGORITHM 4.2. Given a symmetric positive definite matrix X ∈ R
n×n and

k, l ∈ N with 1 � k < n and k + 1 � l � n, a (cosh, sinh)−pair is computed
such that if X̃ = TklXT ′

kl then x̃kk + x̃ll is minimized.

function: (tkk, tkl, tlk, tll) = hypo (X, k, l)

a = −2xkl

b = xkk + xll

cosh =
√

b + a + √
b − a

2 4
√

b2 − a2

sinh =
√

b + a − √
b − a

2 4
√

b2 − a2

tkk = cosh

tkl = sinh

tlk = sinh

tll = cosh

end hypo

ALGORITHM 4.3. (Jacobi for Signature Symmetric Balancing via Subsweeps)
Given a symmetric positive definite matrix X ∈ R

n×n, an N = diag (µ1, . . . , µp,

ν1, . . . , νq) ∈ R
n×n with 0 < µ1 < · · · < µp and 0 < ν1 < · · · < νq and a

tolerance ε > 0, this algorithm overwrites X with X̃ = T XT ′, where T ∈ O+
pq(R)

and off (X̃) = tr X̃2 −
n∑

i=1
x̃2

ii � ε tr X2.

ε = ε tr X2

while off (X) > ε

for k = 1 : p − 1
for l = k + 1 : p

(tkk, tkl, tlk, tll) = ortho(X, k, l)

X = TklXT ′
kl

end
end
for k = 1 : p

for l = p + 1 : n

(tkk, tkl, tlk, tll) = hypo(X, k, l)
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X = TklXT ′
kl;

end
end
for k = p + 1 : n − 1

for l = k + 1 : n

(tkk, tkl, tlk, tll) = ortho(X, k, l)

X = TklXT ′
kl

end
end

end

5. Numerical Experiment

Now we present a numerical experiment. The initial data for the algorithm is a real
positve definite symmetric (30 × 30)−matrix X which is congruent to

� = diag (30, 12, 29, 6, 26, 23, 14, 11, 2, 18, 21, 19, 22, 7, 27,

24, 5, 3, 1, 10, 25, 4, 13, 20, 28, 8, 17, 15, 16, 9),

i.e., any natural number between 1 and 30 occurs as a single Hankel singular value.
It holds X = T �T ′ with T ∈ O+

5,25(R). The transformation matrix T = (tij ) is
randomly generated, its squared Frobenius norm equals about

∑
ij t2

ij = 130000.
The unique global fixed point

X∞ = diag (30, 29, 26, 12, 6, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18,

17, 16, 15, 14, 13, 11, 10, 9, 8, 7, 5, 4, 3, 2, 1)

is approximately reached after 5 sweeps. The accuracy of the computed Hankel
singular values is about 10−9. Each sweep has a computational cost of p(p−1)/2+
q(q − 1)/2 = 10 + 300 = 310 orthogonal (2 × 2)-updates plus pq = 5 · 25 = 125
hyperbolic (2 × 2)-updates. The figure shows the function

dist := tr (X2
k − X2

∞)

on a logarithmic scale against the number of sweeps. Plotted points are joined by
linear interpolation. The squared Euclidean distance function dist = tr (X2

k − X2∞)

is locally a good measure for the rate of convergence because in a neighborhood
of the global minimum the manifold is locally Euclidean. Therefore, ignoring the
dramatic decrease between the initial value and the value after one sweep, the decay
is locally qudratically fast.

Clearly, there is a lot of room for further experiments. E.g., the ordering the
subsweeps are worked off can be modified, possibly leading to improved accur-
acy. Questions concerning condition numbers are not raised. Also the occurence
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Figure 1. Balancing of an I5,25-signature symmetric 30−th order system.
dist := tr (X2

k
− X2∞)

of multiple and/or clustered Hankel singular values are an interesting subject to
debate.

6. Conclusion

In this paper we have presented a numerical algorithm for computing balanced
signature symmetric realizations. The algorithm was analyzed in detail, its con-
vergence properties shown. One numerical example was presented verifying the
theoretical results.
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